

Third Semester B.E. Degree Examination, Dec.09/Jan. 10 Engineering Mathematics - III

Time: 3 hrs .
Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Obtain Fourier series for the function $f(x)$ given by
$\mathrm{f}(\mathrm{x})= \begin{cases}1+\frac{2 \mathrm{x}}{\pi}, & -\pi \leq \mathrm{x} \leq 0 \\ 1-\frac{2 \mathrm{x}}{\pi}, & 0 \leq \mathrm{x} \leq \pi\end{cases}$
and hence deduce that $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$ \qquad (07 Marks)
b. Find the half-range cosine series for the function $f(x)=(x-1)^{2}$ in the interval $0<x<1$.
(07 Marks)
c. Obtain the constant term and the coefficients of the first sine and cosine terms in the Fourier expansion of y as given in the following table.
(06 Marks)

x	0	1	2	3	4	5	6
y	9	18	24	28	26	20	9

2 a. Find the Fourier transform of $f(x)=\left\{1-x^{2},|x| \leq 0\right.$ Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cdot \cos \left(\frac{x}{2}\right) d x$
(07 Marks)
b. Find the Fourier cosine transform of $\mathrm{e}^{-\mathrm{x}^{2}}$
(07 Marks)
c. Find the Fourier sine transform of $\mathrm{e}^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{\mathrm{x} \sin \mathrm{mx}}{1+\mathrm{x}^{2}} \mathrm{dx}=\frac{\pi}{2} . \mathrm{e}^{-\mathrm{m}}, \mathrm{m}>0$.
(06 Marks)
3 a. Form the partial differential equation by eliminating the arbitrary functions f and g from the relation $z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)$
(07 Marks)
b. Solve $\frac{\partial^{3} t}{\partial x^{2} \partial y}+18 x y^{2}+\sin (2 x-y)=0$
(07 Marks)
c. Solve $(m z-n y) \frac{\partial z}{\partial x}+(n x-1 z) \frac{\partial z}{\partial y}=(\mathrm{ly}-\mathrm{mx})$
(06 Marks)
a. Derive one dimensional heat equation by taking $u(x, t)$ as the temperature, x is the distance and t is the time. (Write the figure also.)
(07 Marks)
b. Obtain the D'Almbert's solution of the wave equation $u_{t t}=C^{2} u_{x x}$, subject to the condition $\mathrm{u}(\mathrm{x}, \mathrm{o})=\mathrm{f}(\mathrm{x})$ and $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}(\mathrm{x}, \mathrm{o})=\mathrm{o}$.
(07 Marks)
c. Obtain the various solutions of the Laplace's equation $u_{x x}+u_{y y}=0$, by the method of separation of variables.
(06 Marks)

PART - B

5 a. Complete the real root of the equation $\log _{10} x-1.2=0$ by Regula-Falsi method, correct to four decimal places.
(07 Marks)
b. Solve the system of equations using Gauss-Jordan method:

$$
\begin{aligned}
2 x+5 y+7 z & =52 \\
2 x+y-z & =0 \\
x+y+z & =9
\end{aligned}
$$

(07 Marks)
c. Using the power method, find the largest Eigen value and the corresponding Eigen vector of the matrix $\mathrm{A}=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
(06 Marks)

6 a. The area of a circle (A) corresponding to diameter (D) is given below:
(07 Marks)

D	80	85	90	95	100
A	5026	5674	6362	7088	7854

Find the area corresponding to diameter 105 using an appropriate interpolation formula.
b. Use Newton's divided difference formula to find $f(9)$, given the data,
(07 Marks)

x	5	7	11	13	17
$\mathrm{f}(\mathrm{x})$	150	392	1452	2366	5202

c. Evaluate $\int_{4}^{5.2} \log _{\mathrm{c}} \mathrm{x} d \mathrm{dx}$ using Weddle's rule, taking 7 ardinates.
(06 Marks)

7 a. Derive Euler's equation in the form

$$
\frac{\partial \mathrm{f}}{\partial \mathrm{y}}-\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\partial \mathrm{f}}{\partial \mathrm{y}^{\prime}}\right)=0
$$

(07 Marks)
b. Find the curves on which the functional $\int_{0}^{1}\left[\left(y^{\prime}\right)^{2}+12 x y\right] d x$, with $y(0)=0$ and $y(1)=1$ can be extremised.
(07 Marks)
c. Find the geodesies on a surface given that the arc length on the surface is $S=\int_{x_{1}}^{x_{2}} \sqrt{x\left[1+\left(y^{\prime}\right)^{2}\right]} d x$
(06 Marks)

8 a. Find the Z-transforms of the following :
i) $\cosh n \theta$
ii) $(\mathrm{n}+1)^{2}$
(07 Marks)
b. Find the inverse z-transform of $\frac{z}{(z-1)(z-2)}$.
(07 Marks)
c. Find the response of the system $y_{n+2}-5 y_{n+1}+6 y_{n}=u$, with $y_{0}=0, y_{1}=1$ and $u_{n}=1$ for $\mathrm{n}=0,1,2,3, \ldots \ldots \ldots \ldots \ldots$. by z-transform method.
(06 Marks)
\square

Third Semester B.E. Degree Examination, Dec.09/Jan. 10 Analog Electronic Circuits

Time: 3 hrs .
Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A
1 a. Describe how diffusion and transition capacitances differ.
(05 Marks)
b. A full wave bridge rectifier is supplied from the transformer secondary voltage of 100 V . Calculate the dc output voltage and peek inverse voltage of the diodes employed. (05 Marks)
c. For the clipper circuit shown in the Fig.1(c), the input is $\mathrm{V}_{\mathrm{i}}=50 \mathrm{Sin}$ wt. Calculate and plot to scale the transfer characteristic, indicating slopes and intercepts.
(10 Marks)

Fig. I(c).
2 a. Determine the voltage $V_{e E}$ and I_{c} for the voltage divider configuration shown in Fig.2(a).
(10 Marks)

Fig.2(a).
b.

Determine R_{1} and R_{c} for the network of Fig.2(b). Given $\mathrm{I}_{\mathrm{CQ}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CEQ}}=10 \mathrm{~V}$. Assume S_{i} transistor.
(10 Marks)

Fig. 2(b)
1 of 2

3 a. For the emtter - follower network of Fig.3(a), using r_{e} model determine: i) r_{e}; ii) z_{i}; iii) z_{0}; iv) $A_{v} ;$ v) A_{I}.
(10 Marks)

Fig.3(a).

b. Using complete hybrid equivalent model for a two part system derive expressions for A_{i}, A_{v}, z_{i} and z_{0}.
(10 Marks)
4 a. Prove that Miller effect capacitance $C_{M i}=\left(1-A_{v}\right) c_{f}$ and $C_{M o}=\left(1-1 / \mathrm{Av}_{\mathrm{v}}\right) \mathrm{c}_{\mathrm{f}}$.
(10 Marks)
b. A four stage amplifier has a lower 3 db frequency for an individual stage of $f_{1}=40 \mathrm{~Hz}$ and individual upper 3 db frequency of $\mathrm{f}_{2}=2.5 \mathrm{MHz}$. Calculate the overal lower 3 db and upper 3 db frequency of this full amplifier. Derive the expressions used
(10 Marks)

PART - B

5 a. Explain with the help of circuits what is cascade conneetion and cascode connection. What are the advantages of these connections?
b. Explain the important advantages of a negatiye feedback amplifier.
(10 Marks)
c. List the four types of feedback connections Show practical circuit for each feedback connection.
(06 Marks)
6 a. Explain the working of a transformer coupled class B push pull amplifier.
(10 Marks)
b. A Class B amplifier provides a 20 W peak signal to a 16 ohm load and a power supply of $\mathrm{V}_{\mathrm{cc}}=30 \mathrm{~V}$. Determine the inpet power, output power and circuit efficiency.
(05 Marks)
c. Calculate the harmonic distortion components for an output signal, having a fundamental amplitude of 2.5 V , second harmonic amplitude of 0.25 V , third harmonic amplitude of 0.1 V and fourth harmonie amplitude of 0.05 V . Also calculate the total harmonic distortion.
(05 Marks)
7 a. Explain Barkhausen criterion for oscillations.
(05 Marks)
b. With the help of a need circuit diagram, explain the working of Hartley oscillator. (07 Marks)
c. List the advantages of a crystal oscillator. Explain the working of a series resonant crystal oscillator.
(08 Marks)
8 a. List three advantages of PET over BJT.
(03 Marks)
b. With a neat circuit diagram, explain potential divider biasing of JFET.
(07 Marks)
c. Calculate the voltage gain and input and output impedance for the circuit of Fig.8(c).
(10 Marks)

Fig.8(c).

Given:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{DSS}}=16 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{p}}=-4 \mathrm{~V} \\
& \mathrm{r}_{\mathrm{d}}=40 \mathrm{~K} \Omega \\
& \mathrm{~V}_{\mathrm{GSQ}}=-2.86 \mathrm{~V} .
\end{aligned}
$$

\square 06ES33

Third Semester B.E. Degree Examination, Dec.09/Jan. 10 Logic Design

Time: 3 hrs.
Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Show that $\mathrm{y}=\mathrm{f}(\mathrm{ABCD})=\sum(0,2,5,7,8,10,13,15)$ is the complement of $y=f(A B C D)=\pi(1,3,4,6,9,11,12,14)$. Illustrate your answer using Karnaugh map to show the complement nature of the two equations. Realize both the functions using 7486 IC chip [Exclusive OR gates] only.
(12 Marks)
b. Design a logic circuit that controls the passage of a signal 'A' according to the following requirement.
i) Output ' X ' will equal ' A ' when control inputs B and C are the same.
ii) ' X ' will remain ' HIGH ' when B and C are different

Implement the circuit using suitable gates.
(08 Marks)
2 a. Simplify the following expression using Quine $=$ McClusky technique. Implement the simplified circuit using basic gates: $f(A B C D)=\sum(1,3,4,5,6,9,11,12,13,14)$. (12 Marks)
b. Simplify the following Boolean expression using VEM technique. [3 variable map].
$\mathrm{f}(\mathrm{ABCD})=\sum \mathrm{m}(0,4,5,6,13,14,15)+\mathrm{dc}(2,7,8,9)$

A	B	C	D	f	A	B	C	D	f
0	0	0	0	1	1	0	0	0	ϕ
0	0	0	1	0	1	0	0	1	ϕ
0	0	1	0	ϕ	1	0	1	0	0
0	0	1	1		1	0	1	1	0
0	1	0	0	1	1	1	0	0	0
0	1	0	1	1	1	1	0	1	1
0	1	1	0	1	1	1	1	0	1
0	1	1	1	ϕ	1	1	1	1	1

(08 Marks)
3 a. Design a logic circuit using a 3 to 8 logic decoder that has active low data inputs, an active HIGH enable and active low data outputs. Use such a decoder to realize the full adder circuit.
b.
(08 Marks)
Design a suitable BCD adder circuit using 74LS83 and a provision has to be made for self correction in case if the sum is not a valid BCD number format.
(12 Marks)
4 a. Implement the following Boolean function using $4: 1 \mathrm{MUX}$ $y(A B C D)=\sum m(0,1,2,4,6,9,12,14)$.
(10 Marks)
b. Design a circuit that accepts 2 unsigned 4 bit numbers and provides 3 outputs. The inputs are $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$ and $\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$. Outputs are $\mathrm{A}=\mathrm{B}, \mathrm{A}>\mathrm{B}$ and $\mathrm{A}<\mathrm{B}$. Draw the logic diagram.

PART - B

5 a. Explain the following:
i) Switch debouncing and it's elimination
ii) Race around problem and its elimination.
(14 Marks)
b. Obtain the characteristic equation for the following flip flops:
i) JK flip flop
ii) SR flip flop.
(06 Marks)
6 a. With the help of a diagram, explain the following with respect to shift register:
i) Parallel in and serial out
ii) Ring counter and twisted ring counter.
(08 Marks)
b. Design a Mod - 5 synchronous counter using JK flip flop.
(12 Marks)
7 a. With a suitable example, explain Mealy and Moore model in a sequential circuit analysis.
(10 Marks)
b. A sequential circuit has one input and one output. The state diagram is as shown in Fig.7(b). Design a sequential circuit with ' T ' flip flop.

8 a. Analyse the following sequential circuit shown in Fig.8(a) and obtain:
i) Flip flop input and output equations.
ii) Transition equation
iii) Transition table
iv) State table
v) Draw the state diagram.
(12 Marks)

Fig.8(a).
b. With a suitable example and appropriate state diagram, explain how to recognize a particular sequence. Ex: 1011. (Any sequence can be assumed).
(08 Marks)

06ES34

Third Semester B.E. Degree Examination, Dec.09/Jan. 10
 Network Analysis

Time: 3 hrs .
Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Write the mesh equations for the circuit shown in Fig. 1 and solve for currents i_{1}, i_{2} and i_{3}.
(10 Marks)

Fig.1(a)

b. The node voltage equations of a network are
$\left(\frac{1}{5}+\frac{1}{2} \mathrm{j}+\frac{1}{4}\right) \mathrm{v}_{1}-\frac{1}{4} \mathrm{v}_{2}=\frac{500 \underline{0}^{\circ}}{5}$ and $-\frac{1}{4} \mathrm{v}_{1}+\left(\frac{1}{4}-\frac{1}{\mathrm{j} 2}+\frac{1}{2}\right) \mathrm{v}_{2}=\frac{5090^{\circ}}{2}$. Derive the network.
(10 Marks)
2 a. Define the following terms with respect to the network topology. Give examples.
i) Tree ;
ii) Graph ;
iii) Sub graph ;
iv) Tieset ;
v) Cutset.
(08 Marks)
b. For the network shown in Fig.2(b), write the graph and obtain the tieset schedule considering $\mathrm{j}_{1}, \mathrm{j}_{2}, \mathrm{j}_{5}$ as tree branches. Also calculate all branch currents.
(12 Marks)

Fig.2(b)

3 a. In the circuit shown in Fig.3(a), find v_{x} and prove reciprocity theorem.
(10 Marks)

Fig.3(a)

b. State and explain super position theorem with a suitable example.
(10 Marks)
4 a. Obtain the Thevenin's equivalent network for the circuit in Fig.4(a) between the terminals X and Y .
(10 Marks)

Fig.4(a).

Fig.4(b).
b. What should be the value of pure resistive load to be connected across the terminals a and b in the network shown in Fig. 4(b), so that maximum power is transferred to the load? Calculate the maximum power.
(10 Marks)

PART - B

5 a. Show that for a series RLC resonant circuit the selectivity $\varphi=\frac{\mathrm{f} 0}{\mathrm{f} 2-\mathrm{f} 1}$, where fo: resonate frequency fl and f 2 are half power frequency.
(08 Marks)
b. Determine R_{L} and R_{C} for which the circuit shown in Fig. 6 resonates at all frequencies.
(06 Marks)

Fig.5(b)

c. It is required that a series RLC circuit should resonate at 1 MHz . Determine values of R, L and C if bandwidth of the circuit is 5 kHz and its impedance is $50 \Omega \mathrm{t}$ resonance. (06 Marks)
6 a. Explain the importance of study of initial conditions in electric circuit analysis. (06 Marks)
b. Explain the behaviour of R, L and C elements for transients. Mention their representation at the instant of switching.
(06 Marks)
c. In the circuit shown in Fig.6(c), the switch is moved from ar to b-at $t=0$. Find the values of $\mathrm{i}, \frac{\mathrm{di}}{\mathrm{dt}}, \frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$, if $\mathrm{R}=1 \Omega, \mathrm{~L}=1 \mathrm{H}, \mathrm{C}=0.1$ HF and $\mathrm{V}=100 \mathrm{~V}$. Assume steady state is achieved when k is at ' a '.
(08 Marks)

Fig.7(a).

7 a. Obtain the Laplace transform of saw took waveform shown in Fig.7(a).
(06 Marks)
b. Find the Laplace transform of i) $\delta(t)$; ii) t; iii) $e^{-a t}$.
(06 Marks)
c. Find $f(0)$ and $f(\infty)$ using initial value and final value theorem for the function given below.

$$
F(s)=\frac{s^{3}+7 s^{2}+5}{s\left(s^{3}+3 s^{2}+4 s+2\right)}
$$

(08 Marks)
8 a. Find y parameters for the network shown in Fig.8(a).
(08 Marks)

Fig.8(a).

Fig.8(b)
b. Determine the ' h ' parameters for the network shown in Fig.8(b).
(08 Marks)
c. Mention the application of
i) Transmission parameters ; ii) 'h' parameters ; iii) 'z' parameters.
(04 Marks)

Third Semester B.E. Degree Examination, Dec.09/Jan. 10 Electronic Instrumentation

Time: 3 hrs .
Max. Marks:100
Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Explain the following:
i) Systematic errors
ii) Relative errors.
(04 Marks)
b. Explain the working principle of multi-range voltmeter, with the help of suitable circuit diagram.
(08 Marks)
c. Convert a basic meter movement with an internal resistance of 50Ω and a full scale deflection current of 2 mA in to a multi-range 'dc' voltmeter with voltage ranges of $0-10 \mathrm{~V}$, $0-50 \mathrm{~V}, 0-100 \mathrm{~V}$ and $0-250 \mathrm{~V}$ with following Fig. 1(c).
(08 Marks)

2 a. Explain the ramp type digital voltmeter with the help of block diagram.
(10 Marks)
b. Explain the digital multimeter with basic circuit diagram. (10 Marks)

3 a. Explain the C.R.T. features briefly. (06 Marks)
b. With the basic block diagram, explain the principle of operation of simple C.R.O.
(08 Marks)
c. Explain the operation of an electronic switch, with the help of a block diagram.
(06 Marks)
4 a. Explain the principle and operation of sampling oscilloscope. What are its advantages and disadvantages?
(10 Marks)
b. Explain the operation of digital storage-oscilloscope with the help of a block diagram. Mention the advantages.
(10 Marks)

PART - B

5 a. With a block diagram, explain modern laboratory signal generator.
(10 Marks)
b. Sketch the circuit and waveforms for an OP-AMP astable multivibrator for use as a square wave generator. Explain its operation.
(10 Marks)
6 a. Explain the Wheatstone bridge and derive the balance equation for Wheatstone bridge.
(06 Marks)
b. Explain AC bridge and derive the balance equation for capacitance comparison bridge.
(08 Marks)
c. Find the equivalent parallel resistance and capacitance that causes a wein bridge to null with the following components values:
$\mathrm{R}_{1}=3.1 \mathrm{k} \Omega, \quad \mathrm{c}_{1}=5.2 \mu \mathrm{~F}, \quad \mathrm{R}_{2}=25 \mathrm{k} \Omega, \quad \mathrm{f}=2.5 \mathrm{kHz}$ and $\mathrm{R}_{4}=100 \mathrm{k} \Omega$
(06 Marks)
7 a. Explain the potentiometer with figure.
(06 Marks)
b. Explain the resistance thermometer with circuit diagram.
c. Explain the construction, principle and operation of LVDT. Show characteristics curve.

8 a. Explain piezo electrical transducer, with circuit diagram.
b. Explain the light emitting diodes (LED) with diagram.
(06 Marks)
c. Explain how power is measured using a bolometer, with a suitable diagram.
(08 Marks)

06ES36

Third Semester B.E. Degree Examination, Dec.09/Jan. 10 Field Theory

Time: 3 hrs .
Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Define electric field intensity due to a point charge in vector form. With usual notations, derive the expression for field at a point due to many charges.
(07 Marks)
b. State and prove divergence theorem.
(05 Marks)
c. Calculate the divergence of vector D at the points specified using cartesian, cylindrical and spherical coordinates:
i) $\quad D=\frac{1}{z^{2}}\left[10 x y z . a_{x}+5 x^{2} z a_{y}+\left(2 z^{3}-5 x^{2} y\right) a_{z}\right] c / m^{2}$ at point $P(2,3,5)$
ii) $\quad D=5 z^{2} \cdot a_{\rho}+10 \rho z \cdot a_{z}$ at $\rho\left(3,-45^{\circ}, 5\right)$
(08 Marks)

2 a. Define electric field and electric potential. With usual notations establish the relationship between electric field intensity and electric potential.
(10 Marks)
b. With usual notations, derive the boundary conditions for perfect dielectric materials of permitivities ϵ_{1} and ϵ_{2}.
(05 Marks)
c. Given the potential field $V=50 x^{2} y z+20 y^{2}$ volts in free space, find
i) Potential V at $\mathrm{P}(1,2,3)$
ii) $\quad\left|E_{p}\right|$ (Magnitude of electric potential)
iii) $\quad \hat{a}_{r}$ at P.
(05 Marks)

3 a. With usual notations, deduce the Poisson's equation and Laplace equation from Maxwell's first equation. Express $\nabla^{2} \mathrm{~V}$ in different co-ordinate systems.
(10 Marks)
b. Given $V=A \ln \left[B \frac{(1-\cos \theta)}{1+\cos \theta}\right]$ volts
i) Show that V satisfies Laplace equation in spherical coordinates.
ii) Find A and B so that $\mathrm{V}=100 \mathrm{~V},|\mathrm{E}|=500 \mathrm{~V} / \mathrm{m}$ at $\mathrm{r}=5 \mathrm{mt}, \theta=90^{\circ}$ and $\phi=60^{\circ}$.
(10 Marks)

4 a. State and prove the Stroke's theorem.
(06 Marks)
b. If the vector magnetic potential at a point in a space is given as $A=100 \rho^{1.5} \mathrm{a}_{\mathbf{z}} \mathrm{wb} / \mathrm{mt}$, find the following: i) H ii) J and show that $\phi \mathrm{H} . \mathrm{dI}=\mathrm{I}$ for the circular path with $\rho=1$. (06 Marks)
c. In cylindrical coordinates, a magnetic field is given as $H=\left[4 \rho-2 \rho^{2}\right] a_{\phi} A / m, 0 \leq \rho \leq 1$.
i) Find the current density or a function of ρ within cylinder.
ii) Find the total current that passes through the surface $Z=0$ and $0 \leq \rho \leq 1 \mathrm{mt}$ in the a_{z} direction.
(08 Marks)

PART - B

5 a. With usual notations, derive the equation for magnetic force between two differential current elements.
(06 Marks)
b. Find the torque vector on a square loop having corners $(-2,-2,0),(2,-2,0),(2,2,0)$ and $(-2,2,0) \quad$ i) about the origin by $\mathrm{B}=0.4 \mathrm{a}_{\mathrm{x}} \mathrm{T} \quad$ ii) About the origin by $\mathrm{B}=0.6 \mathrm{a}_{\mathrm{x}}-0.4 \mathrm{a}_{\mathrm{y}} \mathrm{T}$.
(06 Marks)
c. Determine the mutual inductance between conducting loop and a very long straight wire shown in Fig.5(c).
(08 Marks)

Fig.5(c)
6 a. With usual notations, derive the Maxwell's equation in point form as derived from Faraday's law. Hence show that electric field $E=2 x^{3} a_{x}+4 x^{4} a v / m$ can not arise from a static distribution of charges.
(08 Marks)
b. With usual notations, derive the differential form of continuity equation from the Maxwell's equations.
(04 Marks)
c. The time varying magnetic field in free space is given as $B=\left\{\begin{array}{cc}4 \sin \omega \operatorname{ta}_{z} & \rho \leq \rho_{0} \\ 0 & \rho>0\end{array}\right.$

Determine E using Faraday's law Verify the same using Maxwell's equations. (08 Marks)
7 a. State and explain Polynting theorem.
(04 Marks)
b. With usual notations, derive the expression for intrinsic impendence for lossy media.
(06 Marks)
c. The electric field intensity of 300 MHz uniform plane wave in free space is given by $E=(20+j 50)\left(a_{x}+2 a_{v}\right) e^{-v z z} \mathrm{~V} / \mathrm{m}$. Find
i) ω, λ, u and β
i) E at $\mathrm{t}=1 \mathrm{~ns} \mathrm{z}=10 \mathrm{~cm}$
iii) What is $|\mathrm{H}|_{\max }$?
(10 Marks)
8 a. Write a short note on standing wave ratio (SWR).
(04 Marks)
b. With usual notations, derive a general expression for a traveling plane wave.
(06 Marks)
c. Travelling $\overrightarrow{\mathrm{E}}$ and $\overrightarrow{\mathrm{H}}$ waves in the free space (region-1) are normally incident on the interface with a perfect dielectric (region-2) with $\epsilon_{\mathrm{r}}=3.0$. Compare the magnitude of the incident wave and transmitted $\overrightarrow{\mathrm{E}}$ and $\overrightarrow{\mathrm{H}}$ waves at the interface.

(10 Marks)

USN \square MATDIP301

Time: 3 hrs .
Max. Marks:100

Third Semester BE Degree Examination, Dec.09-Jan. 10 Advanced Mathematics - I

(06 Marks)
1 a. Find the modulus and amplitude of $\frac{4+2 \mathrm{i}}{2-3 \mathrm{i}}$.
b. Express the complex number $2+3 \mathrm{i}+\frac{1}{1-\mathrm{i}}$ in the form of $\mathrm{a}+\mathrm{ib}$.
(07 Marks)
c. Express the complex number $\sqrt{3}+\mathrm{i}$ in the polar form.
(07 Marks)

2 a. Find the $\mathrm{n}^{\text {th }}$ derivative of $\mathrm{e}^{-x} \sin ^{2} \mathrm{x}$.
(06 Marks)
b. Find the $n^{\text {th }}$ derivative of $\frac{x}{(x-1)(2 x+3)}+e^{2 x}$.
c. If $y=\sin ^{-1} x$ then prove that $\left(1+x^{2}\right) y_{n+2}-(2 n+1) x y_{n-1}-n^{2} y_{n}=0$.
(07 Marks)
(07 Marks)

3 a. Using Maclaurin's series expand $\tan x$ unto the term containing x^{3}.
(06 Marks)
b. Find the angle between the radius veetor and tangent to the curve $r=\sin \theta+\cos \theta$.
(07 Marks)
c. With usual notations prove that
i) $\mathrm{P}=\mathrm{r} \sin \phi$
ii) $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{p}^{4}}\left(\frac{\mathrm{~d}-\mathrm{d}^{2}}{\mathrm{~d} \theta}\right)^{2}$
(07 Marks)

4 a. If $u=f\left(r, s, t\right.$ where $=\frac{x}{y}, s=\frac{y}{z}, t=\frac{z}{x}$ then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
(06 Marks)
b. If $u=f(x+a y)+g(x-a y)$ then show that $\frac{\partial^{2} u}{\partial y^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
(07 Marks)
c. If $u=x^{2}-2 y, v=x+y+z, w=x-2 y+3 z$ then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
(07 Marks)

5 a. Obtain the reduction formula for $\int \cos ^{n} \mathrm{xdx}$ where n is a positive integer.
(06 Marks)
b. Evaluate $\int_{0}^{1} x^{6} \sqrt{1-x^{2}} d x$.
(07 Marks)
c. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d y d x$. .
(07 Marks)

6 a. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2} y z d z d y d x$.
b. Prove that $\sqrt{\frac{1}{2}}=\sqrt{\pi}$.
(07 Marks)
c. Show that $\int_{0}^{\pi / 2} \sqrt{\operatorname{Sin} \theta} d \theta \times \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\operatorname{Sin} \theta}}=\pi$.
(07 Marks)

7 a. Solve $\left(e^{y}+1\right) \operatorname{Cos} x d x+e^{y} \operatorname{Sin} x d y=0$.
(06 Marks)
b. Solve $y d x-x d y=\sqrt{x^{2}+y^{2}} d x$.
c. Solve $x \frac{d y}{d x}+y=x^{3} y^{6}$.

8 a. Solve $4 \frac{d^{3} y}{d x^{3}}+4 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$.
(06 Marks)
b. Solve $\frac{d^{2} x}{\mathrm{dt}^{2}}+2 \frac{\mathrm{dx}}{\mathrm{dt}}+3 \mathrm{x}=\operatorname{Sint}+\mathrm{e}^{-t}$.
(07 Marks)
c. Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$.

